Search results for " 17B60"

showing 2 items of 2 documents

New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology

2007

We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]2k-Lie algebrasstandard polynomial.standard polynomial[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Deformation theoryGerstenhaber-Nijenhuis bracketFOS: Mathematicsgraded Lie algebrasquadratic Lie algebra[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]Representation Theory (math.RT)Gerstenhaber bracketcyclic cohomologysuper Poisson bracketsMathematics - Representation TheorySchouten bracket17B70 17B05 17B20 17B56 17B60 17B65
researchProduct

A note on the Schur multiplier of a nilpotent Lie algebra

2011

For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.

Pure mathematicsAlgebra and Number TheoryDimension (graph theory)Schur multiplier nilpotent Lie algebrasMathematics - Rings and AlgebrasUpper and lower boundsNilpotent Lie algebraSettore MAT/02 - Algebra17B30 17B60 17B99Rings and Algebras (math.RA)Lie algebraFOS: MathematicsSettore MAT/03 - GeometriaAlgebra over a fieldAbelian groupMathematicsSchur multiplier
researchProduct